TWo
&“ Q):9 Trees

g

@ Professor Frank Kreimendahl

dhool of Computing and Data Science
Wentworth Institute of Technology

S
=

October 19, 2022

Introduction

Binary Tree
Binary Trees
Trav

BinaryTree

Introduction

School of Computing and Data Science -2/36 - Frank Kreimendahl | kreimendahlf@wit.edu

Introduction

Introduction

m All previous data structures have been linear — from a given
element we can look forwards or backwards and find one
element

m Trees are nonlinear
m Trees have a hierarchical structure that can signify data
relationships:
® (lass hierarchies
® Disk directories/file systems
® Family tree

School of Computing and Data Science -3/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Binary Trees

Introduction

Binary Trees

m Trees can be defined recursively
m Recursive methods for querying/modifying trees are simple

m We will focus on binary trees: each element has two ‘next’
values and one ‘previous’ value

m These trees can be represented with an array or collection of
nodes

m Some trees allow for more efficient operations than their
linear data structure counterparts — fewer steps to
accomplish the same task

School of Computing and Data Science -4/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Introduction

Binary Trees

Termin
Defini

E
Huffman Tree

Traversal Binary Tl’ees

BinaryTree
Class

School of Computing and Data Science Frank Kreimendahl | kreimendahlf@wit.edu

4 Tree Terminology

Introduction

m Node: An element holder regardless
of implementation

Binary Trees

m Root: The top node in a tree

OD15

m Branch: One of two ‘next’ nodes

m Children: Tree term for ‘next’ nodes, 0011 0022
looking down a tree Ty T
m Parent: The reciprocal relation of a (=) °°”) Gl
child =)
® Every node has one parent except 3
the root (o0ss)

m Leaf node: a node with no children

m Subtree: Any node from the tree
combined with its descendants

School of Computing and Data Science -6/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Introduction

Traversal

BinaryTree
Class

More Tree Terminology

m Level: Distance to root node + 1

® [f node n is root, its level is 1
® Otherwise, node n’s level is 14 its parent’s level

m Height: The number of nodes in the longest path from a leaf
to the root

m Binary Tree: A tree in which every node has up to two
children

m Full Tree: A binary tree where each node has 0 or 2 children

m Perfect Tree: A binary tree which has every level filled
completely

m Complete Tree: A binary tree which only has gaps on the
lowest level, and those gaps only appear to the right

School of Computing and Data Science -7/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Binary Tree Definition

Introduction

Binary Trees

Expression Tree
Huffman Tree

m In a binary tree, each node has two subtrees

Traversal
m A set of nodes T is a binary tree if either:
® T is empty
® T’srootis a node with left and right subtrees which are
binary trees

School of Computing and Data Science -8/36 - Frank Kreimendahl | kreimendahlf@wit.edu

Introduction

Binary Trees

Huffman Tree

Traversal

4 Expression Tree

m Each node contains an operator or
operand

m Operands only appear in leaf nodes

m Parentheses are not stored because
they are implicit in the tree structure

m Operators at levels closer to root are
evaluated after deeper levels

School of Computing and Data Science -9/36 -

(x+y)*((a+b)/c)

Frank Kreimendahl | kreimendahlf@wit.edu

4

Huffman Tree

Introduction

ry Trees

m Represents Huffman codes for characters that appear in a
—— text document

Traversal m Rather than ASCII, uses variable bit sizes to represent
' different characters

m More common characters are represented with fewer bits
m Allows memory compression based on character frequency

m Allows for fast compression and decompression with a
Huffman binary tree

School of Computing and Data Science -10/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Huffman Tree

Introduction 0 1
Binary Trees
Terminolog 0 1 0
Definitio
0 1 0l 0.1 0 1
01 [+ | ['D ! 041 0Al 0 Al Y
e) &
0A1 TN IANE = 01 N 1 0Nl 0 1 N
OICOIONO. @@ (&)
~ 041 A1 o 0.<1 0OR 1
o W @ Q)
e) T 0A 1
b ® O W &)
o1
O,
04U =
(&)
0 A1 0N

Huffman Tree

School of Computing and Data Science -11/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Binary Search Tree

Introduction
ry Trees

m A binary tree where, for each node n,
all values in n’s left subtree are less
than n, and all values in n’s right
subtree are greater than n

m New elements can only be inserted in
specific positions

m Elements can only be found in certain
positions

m Operations are efficient because not
every element needs to be
examined/shifted to maintain BST

School of Computing and Data Science -12/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Binary Search Algorithm

Introduction

Binary Trees Starting at a tree’s root, this algorithm recursively searches in a
tree for a target:

SEARCH(tree, target)

Traversal

1: if tree is empty then

2 return null // target not found

3: else if target matches root of tree then
4 return root node

5: else if target < root node then

6

7

8

BinaryTree
Class

return SEARCH(root’s left child, target)
. else
return SEARCH(root’s right child, target)

School of Computing and Data Science -13/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Introduction

Binary Trees

Traversal
Tree Traversa
Algorithn

BinaryTree Tl'aversal
Class

School of Computing and Data Science - 14/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Tree Traversal

Introduction

m The order of previous data structures is straightforward —
move from front to back

m We can move through a tree to visit each node
m This process is called tree traversal

m There are three common ways to traverse a tree:

® preorder traversal
® inorder traversal
® postorder traversal

School of Computing and Data Science - 15/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Preorder Traversal

Introduction

Binary Trees

Starting at a tree’s root, this algorithm recursively visits both
subtrees:

PREORDER(root)

BinaryTree

Class 1: if tree is empty then
2 return

3: else

4: visit root

5 preorder(root.left)
6 preorder(root.right)

School of Computing and Data Science - 16/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Inorder Traversal

Introduction

Binary Trees

INORDER(ro0t)

if tree is empty then
return

else
inorder(root.left)
visit root
inorder(root.right)

AN A S e

School of Computing and Data Science -17/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Postorder Traversal

Introduction

Binary Trees

POSTORDER(root)

1: if tree is empty then

2 return

3: else

4: postorder(root.left)
5

6

BinaryTree
Class

postorder(root.right)
visit root

School of Computing and Data Science - 18/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Traversal Visualization

Introduction

m Imagine the tree painted on the ground

Binary Trees

m Always walk with your left foot next to the tree as you walk

m This traversal is called an Euler tour

School of Computing and Data Science -19/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Preorder Traversal

it m Blue path follows preorder traversal
Binary Trees m Visit a node before visiting subtrees

m Visitation occurs for downward pointing arrow — when node
is first encountered
m The sequence in this exampleisabdgehcfi]

School of Computing and Data Science -20/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Inorder Traversal

Introduction m Visit a node between left and right subtree
Binary Trees

m Visitation occurs for horizontal arrow — after left subtree but
before right subtree

m The sequence in this exampleisdgbheaifjc

School of Computing and Data Science -21/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Postorder Traversal

Tntroduction m Visit a node just before leaving it for the last time
Binary Trees

m Visitation occurs for upward arrow — after both subtrees have
been fully explored

m The sequence in this exampleisgdhebijfca

School of Computing and Data Science -22/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Traversal of Expression Tree

Litrodusion m A postorder traversal of an expression tree results in the
i sequencex y + a b + ¢ / *

m This is postfix notation that we saw with stacks!

m We can generate prefix and infix notation similarly (though
infix requires some parentheses)

School of Computing and Data Science -23/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Introduction
Binary Trees

Traversal

BinaryTree
Class

o BinaryTree Class

School of Computing and Data Science -24/36 - Frank Kreimendahl | kreimendahlf@wit.edu

' Node Class

Introduction
Binar;
Traversal

BinaryTree

m Similar to a linked list, a node holds
data and references to other nodes

Node Class

m The data is a reference to generic
type E

® A node has a reference to the root of
both subtrees

School of Computing and Data Science -25/36 -

Node

Frank Kreimendahl | kreimendahlf@wit.edu

" Node Class Implementation

Introduction

protected static class Node<E>
implements Serializable {

Binary Trees

Traversal

protected E data;
protected Node<E> left;
protected Node<E> right;

BinaryTree

public Node(E data) {
this.data = data;
left = null;
right = null;

}

public String toString() {
return data.toString();

}

’

School of Computing and Data Science -26/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Example Tree

Introduction

The BinaryTree class only holds a reference to the root

Binary Trees

Traversal

BinaryTree Node
Binary 3 f—v
Class

root = [——| left = =
right = — |
data = rar
Node
Node
Teft = null left = null left = null Teft = null
right = null right = null right = null right = null
data = 'x' data = 'y’ data = 'a’' data = 'b"

School of Computing and Data Science -27/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Introduction
Binary Trees

Traversal

Implementation

Implementation

Data Field Attribute

protected Node<E> root

Constructor

Reference to the root of the tree.

Behavior

public BinaryTree()

Constructs an empty binary tree.

protected BinaryTree(Node<E> root)

Constructs a binary tree with the given node as the root.

public BinaryTree(E data, BinaryTree<E>
leftTree, BinaryTree<E> rightTree)

Method
public BinaryTree<E> getLeftSubtree()

Constructs a binary tree with the given data at the root
and the two given subtrees.

Behavior

Returns the left subtree.

public BinaryTree<E> getRightSubtree()

Returns the right subtree.

public E getData()

Returns the data in the root.

public boolean isLeaf()

Returns true if this tree is a leaf, false otherwise.

public String toString()

Returns a String representation of the tree.

private void preOrderTraverse(Node<E>
node, int depth, StringBuilder sb)

Performs a preorder traversal of the subtree whose root is
node. Appends the representation to the StringBuilder.
Increments the value of depth (the current tree level).

public static BinaryTree<E>
readBinaryTree(Scanner scan)

Constructs a binary tree by reading its data using

Scanner scan.

School of Computing and Data Science

- 28/36 -

Frank Kreimendahl | kreimendahlf@wit.edu

' Class Definition

Introduction

Binary Trees
Traversal

BinaryTree import java .io.*x 8

Example Trec

public class BinaryTree<E> implements Serializable {
// Insert inner class Node<E> here

Implementation

protected Node<E> root;

// Insert constructors and methods here

3

School of Computing and Data Science -29/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Introduction

Binary Trees

Implementation

Constructors

public BinaryTree() {
root = null;

}

protected BinaryTree(Node<E> root) {

this.root = root;

}

School of Computing and Data Science

-30/36 -

Frank Kreimendahl | kreimendahlf@wit.edu

4

Constructor

Introduction

Given a data value and two subtrees to join under a new root
- public BinaryTree(E data, BinaryTree<E> leftTree,
BinaryTree<E> rightTree) {
root = new Node<E>(data);
if (leftTree != null)
root.left = leftTree.root;
else
root.left

BinaryTree

null;

if (rightTree != null)
root.right = rightTree.root;
else
root.right = null;

School of Computing and Data Science -31/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Getting Subtrees

Introduction

Binary Trees

Traversal

public BinaryTree<E> getLeftSubtree() {
if (root !'= null && root.left != null)
return new BinaryTree<E>(root.left);
else
return null;

}

getRightSubtree is symmetrical.

School of Computing and Data Science -32/36 - Frank Kreimendahl | kreimendahlf@wit.edu

' isLeaf

Introduction

Binary Trees

Implementation

public boolean isLeaf() {
return (root.left == null && root.right == null);

}

School of Computing and Data Science -33/36 - Frank Kreimendahl | kreimendahlf@wit.edu

Generate a string of data encountered in a preorder traversal with
indentation to show each value’s depth in the tree

Implementation

public String toString() {
StringBuilder sb = new StringBuilder();
preOrderTraverse(root, 1, sb);
return sb.toString();

}

School of Computing and Data Science -34/36 - Frank Kreimendahl | kreimendahlf@wit.edu

' 4 preOrderTraverse

Introduction

Binary Trees private void preOrderTraverse(Node<E> node, int depth,
Traversal StringBuilder Sb) {

for (int i = 1; i < depth; i++) {
sb.append(" "); // indentation

}

if (node == null) {
sb.append ("null\n") ;

} else {
sb.append (node.toString()) ;
sb.append("\n") ;
preOrderTraverse(node.left, depth + 1, sb);
preOrderTraverse(node.right, depth + 1, sb);

+

}

School of Computing and Data Science -35/36 - Frank Kreimendahl | kreimendahlf@wit.edu

4 toString Example

Introduction .
B toString results
Binary Trees

Traversal *
BinaryTree v
X
1\ ‘ = ° null
Implementarion null
y
null
° 0 null
/
a
° o e Q null
null
b
null
null

v

School of Computing and Data Science -36/36 - Frank Kreimendahl | kreimendahlf@wit.edu

	Introduction
	Binary Trees

	Binary Trees
	Terminology
	Definition
	Expression Tree
	Huffman Tree
	Binary Search Tree

	Traversal
	Tree Traversal
	Algorithms
	Visualization
	Expression Traversal

	BinaryTree Class
	Node Class
	Example Tree
	Implementation

