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Introduction

All previous data structures have been linear – from a given
element we can look forwards or backwards and find one
element

Trees are nonlinear
Trees have a hierarchical structure that can signify data
relationships:

• Class hierarchies
• Disk directories/file systems
• Family tree
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Binary Trees

Trees can be defined recursively

Recursive methods for querying/modifying trees are simple

We will focus on binary trees: each element has two ‘next’
values and one ‘previous’ value

These trees can be represented with an array or collection of
nodes

Some trees allow for more efficient operations than their
linear data structure counterparts – fewer steps to
accomplish the same task
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Tree Terminology

Node: An element holder regardless
of implementation

Root: The top node in a tree

Branch: One of two ‘next’ nodes

Children: Tree term for ‘next’ nodes,
looking down a tree
Parent: The reciprocal relation of a
child

• Every node has one parent except
the root

Leaf node: a node with no children

Subtree: Any node from the tree
combined with its descendants
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More Tree Terminology

Level: Distance to root node + 1
• If node n is root, its level is 1
• Otherwise, node n’s level is 1+ its parent’s level

Height: The number of nodes in the longest path from a leaf
to the root

Binary Tree: A tree in which every node has up to two
children

Full Tree: A binary tree where each node has 0 or 2 children

Perfect Tree: A binary tree which has every level filled
completely

Complete Tree: A binary tree which only has gaps on the
lowest level, and those gaps only appear to the right

School of Computing and Data Science - 7/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Binary Tree Definition

In a binary tree, each node has two subtrees
A set of nodes T is a binary tree if either:

• T is empty
• T ’s root is a node with left and right subtrees which are

binary trees
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Expression Tree

Each node contains an operator or
operand

Operands only appear in leaf nodes

Parentheses are not stored because
they are implicit in the tree structure

Operators at levels closer to root are
evaluated after deeper levels

(x+ y)∗ ((a+b)/c)
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Huffman Tree

Represents Huffman codes for characters that appear in a
text document

Rather than ASCII, uses variable bit sizes to represent
different characters

More common characters are represented with fewer bits

Allows memory compression based on character frequency

Allows for fast compression and decompression with a
Huffman binary tree
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Binary Search Tree

A binary tree where, for each node n,
all values in n’s left subtree are less
than n, and all values in n’s right
subtree are greater than n

New elements can only be inserted in
specific positions

Elements can only be found in certain
positions

Operations are efficient because not
every element needs to be
examined/shifted to maintain BST
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Binary Search Algorithm

Starting at a tree’s root, this algorithm recursively searches in a
tree for a target:

SEARCH(tree, target)

1: if tree is empty then
2: return null // target not found
3: else if target matches root of tree then
4: return root node
5: else if target < root node then
6: return SEARCH(root’s left child, target)
7: else
8: return SEARCH(root’s right child, target)
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Tree Traversal

The order of previous data structures is straightforward –
move from front to back

We can move through a tree to visit each node

This process is called tree traversal
There are three common ways to traverse a tree:

• preorder traversal
• inorder traversal
• postorder traversal
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Preorder Traversal

Starting at a tree’s root, this algorithm recursively visits both
subtrees:

PREORDER(root)
1: if tree is empty then
2: return
3: else
4: visit root
5: preorder(root.left)
6: preorder(root.right)
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Inorder Traversal

INORDER(root)
1: if tree is empty then
2: return
3: else
4: inorder(root.left)
5: visit root
6: inorder(root.right)
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Postorder Traversal

POSTORDER(root)
1: if tree is empty then
2: return
3: else
4: postorder(root.left)
5: postorder(root.right)
6: visit root
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Traversal Visualization

Imagine the tree painted on the ground

Always walk with your left foot next to the tree as you walk

This traversal is called an Euler tour

School of Computing and Data Science - 19/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Preorder Traversal

Blue path follows preorder traversal
Visit a node before visiting subtrees
Visitation occurs for downward pointing arrow – when node
is first encountered
The sequence in this example is a b d g e h c f i j
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Inorder Traversal

Visit a node between left and right subtree

Visitation occurs for horizontal arrow – after left subtree but
before right subtree

The sequence in this example is d g b h e a i f j c
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Postorder Traversal

Visit a node just before leaving it for the last time

Visitation occurs for upward arrow – after both subtrees have
been fully explored

The sequence in this example is g d h e b i j f c a
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Traversal of Expression Tree

A postorder traversal of an expression tree results in the
sequence x y + a b + c / *

This is postfix notation that we saw with stacks!

We can generate prefix and infix notation similarly (though
infix requires some parentheses)
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Node Class

Similar to a linked list, a node holds
data and references to other nodes

The data is a reference to generic
type E

A node has a reference to the root of
both subtrees
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Node Class Implementation

protected static class Node<E>
implements Serializable {

protected E data;
protected Node<E> left;
protected Node<E> right;

public Node(E data) {
this.data = data;
left = null;
right = null;

}

public String toString() {
return data.toString();
}

}
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The BinaryTree class only holds a reference to the root
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Class Definition

import java.io.*;

public class BinaryTree<E> implements Serializable {
// Insert inner class Node<E> here

protected Node<E> root;

// Insert constructors and methods here
}
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Constructors

public BinaryTree() {
root = null;

}

protected BinaryTree(Node<E> root) {
this.root = root;

}
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Constructor

Given a data value and two subtrees to join under a new root

public BinaryTree(E data, BinaryTree<E> leftTree,
BinaryTree<E> rightTree) {

root = new Node<E>(data);
if (leftTree != null)

root.left = leftTree.root;
else

root.left = null;

if (rightTree != null)
root.right = rightTree.root;

else
root.right = null;

}
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Getting Subtrees

public BinaryTree<E> getLeftSubtree() {
if (root != null && root.left != null)

return new BinaryTree<E>(root.left);
else

return null;
}

getRightSubtree is symmetrical.
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isLeaf

public boolean isLeaf() {
return (root.left == null && root.right == null);

}
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toString

Generate a string of data encountered in a preorder traversal with
indentation to show each value’s depth in the tree

public String toString() {
StringBuilder sb = new StringBuilder();
preOrderTraverse(root, 1, sb);
return sb.toString();

}
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preOrderTraverse

private void preOrderTraverse(Node<E> node, int depth,
StringBuilder sb) {

for (int i = 1; i < depth; i++) {
sb.append(" "); // indentation

}
if (node == null) {

sb.append("null\n");
} else {

sb.append(node.toString());
sb.append("\n");
preOrderTraverse(node.left, depth + 1, sb);
preOrderTraverse(node.right, depth + 1, sb);

}
}
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toString Example

toString results
*

+
x

null
null

y
null
null

/
a

null
null

b
null
null
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