
Trees

Professor Frank Kreimendahl

School of Computing and Data Science

Wentworth Institute of Technology

October 19, 2022



Introduction
Binary Trees

Binary Trees

Traversal

BinaryTree
Class

Introduction

School of Computing and Data Science - 2/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction
Binary Trees

Binary Trees

Traversal

BinaryTree
Class

Introduction

All previous data structures have been linear – from a given
element we can look forwards or backwards and find one
element

Trees are nonlinear
Trees have a hierarchical structure that can signify data
relationships:

• Class hierarchies
• Disk directories/file systems
• Family tree

School of Computing and Data Science - 3/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction
Binary Trees

Binary Trees

Traversal

BinaryTree
Class

Binary Trees

Trees can be defined recursively

Recursive methods for querying/modifying trees are simple

We will focus on binary trees: each element has two ‘next’
values and one ‘previous’ value

These trees can be represented with an array or collection of
nodes

Some trees allow for more efficient operations than their
linear data structure counterparts – fewer steps to
accomplish the same task

School of Computing and Data Science - 4/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Binary Trees

School of Computing and Data Science - 5/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Tree Terminology

Node: An element holder regardless
of implementation

Root: The top node in a tree

Branch: One of two ‘next’ nodes

Children: Tree term for ‘next’ nodes,
looking down a tree
Parent: The reciprocal relation of a
child

• Every node has one parent except
the root

Leaf node: a node with no children

Subtree: Any node from the tree
combined with its descendants

School of Computing and Data Science - 6/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

More Tree Terminology

Level: Distance to root node + 1
• If node n is root, its level is 1
• Otherwise, node n’s level is 1+ its parent’s level

Height: The number of nodes in the longest path from a leaf
to the root

Binary Tree: A tree in which every node has up to two
children

Full Tree: A binary tree where each node has 0 or 2 children

Perfect Tree: A binary tree which has every level filled
completely

Complete Tree: A binary tree which only has gaps on the
lowest level, and those gaps only appear to the right

School of Computing and Data Science - 7/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Binary Tree Definition

In a binary tree, each node has two subtrees
A set of nodes T is a binary tree if either:

• T is empty
• T ’s root is a node with left and right subtrees which are

binary trees

School of Computing and Data Science - 8/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Expression Tree

Each node contains an operator or
operand

Operands only appear in leaf nodes

Parentheses are not stored because
they are implicit in the tree structure

Operators at levels closer to root are
evaluated after deeper levels

(x+ y)∗ ((a+b)/c)

School of Computing and Data Science - 9/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Huffman Tree

Represents Huffman codes for characters that appear in a
text document

Rather than ASCII, uses variable bit sizes to represent
different characters

More common characters are represented with fewer bits

Allows memory compression based on character frequency

Allows for fast compression and decompression with a
Huffman binary tree

School of Computing and Data Science - 10/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Huffman Tree

Huffman Tree

School of Computing and Data Science - 11/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Binary Search Tree

A binary tree where, for each node n,
all values in n’s left subtree are less
than n, and all values in n’s right
subtree are greater than n

New elements can only be inserted in
specific positions

Elements can only be found in certain
positions

Operations are efficient because not
every element needs to be
examined/shifted to maintain BST

School of Computing and Data Science - 12/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees
Terminology

Definition

Expression Tree

Huffman Tree

Binary Search Tree

Traversal

BinaryTree
Class

Binary Search Algorithm

Starting at a tree’s root, this algorithm recursively searches in a
tree for a target:

SEARCH(tree, target)

1: if tree is empty then
2: return null // target not found
3: else if target matches root of tree then
4: return root node
5: else if target < root node then
6: return SEARCH(root’s left child, target)
7: else
8: return SEARCH(root’s right child, target)

School of Computing and Data Science - 13/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Traversal

School of Computing and Data Science - 14/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Tree Traversal

The order of previous data structures is straightforward –
move from front to back

We can move through a tree to visit each node

This process is called tree traversal
There are three common ways to traverse a tree:

• preorder traversal
• inorder traversal
• postorder traversal

School of Computing and Data Science - 15/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Preorder Traversal

Starting at a tree’s root, this algorithm recursively visits both
subtrees:

PREORDER(root)
1: if tree is empty then
2: return
3: else
4: visit root
5: preorder(root.left)
6: preorder(root.right)

School of Computing and Data Science - 16/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Inorder Traversal

INORDER(root)
1: if tree is empty then
2: return
3: else
4: inorder(root.left)
5: visit root
6: inorder(root.right)

School of Computing and Data Science - 17/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Postorder Traversal

POSTORDER(root)
1: if tree is empty then
2: return
3: else
4: postorder(root.left)
5: postorder(root.right)
6: visit root

School of Computing and Data Science - 18/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Traversal Visualization

Imagine the tree painted on the ground

Always walk with your left foot next to the tree as you walk

This traversal is called an Euler tour

School of Computing and Data Science - 19/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Preorder Traversal

Blue path follows preorder traversal
Visit a node before visiting subtrees
Visitation occurs for downward pointing arrow – when node
is first encountered
The sequence in this example is a b d g e h c f i j

School of Computing and Data Science - 20/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Inorder Traversal

Visit a node between left and right subtree

Visitation occurs for horizontal arrow – after left subtree but
before right subtree

The sequence in this example is d g b h e a i f j c

School of Computing and Data Science - 21/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Postorder Traversal

Visit a node just before leaving it for the last time

Visitation occurs for upward arrow – after both subtrees have
been fully explored

The sequence in this example is g d h e b i j f c a

School of Computing and Data Science - 22/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal
Tree Traversal

Algorithms

Visualization

Expression Traversal

BinaryTree
Class

Traversal of Expression Tree

A postorder traversal of an expression tree results in the
sequence x y + a b + c / *

This is postfix notation that we saw with stacks!

We can generate prefix and infix notation similarly (though
infix requires some parentheses)

School of Computing and Data Science - 23/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation BinaryTree Class

School of Computing and Data Science - 24/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

Node Class

Similar to a linked list, a node holds
data and references to other nodes

The data is a reference to generic
type E

A node has a reference to the root of
both subtrees

School of Computing and Data Science - 25/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

Node Class Implementation

protected static class Node<E>
implements Serializable {

protected E data;
protected Node<E> left;
protected Node<E> right;

public Node(E data) {
this.data = data;
left = null;
right = null;

}

public String toString() {
return data.toString();
}

}

School of Computing and Data Science - 26/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

Example Tree

The BinaryTree class only holds a reference to the root

School of Computing and Data Science - 27/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

Implementation

School of Computing and Data Science - 28/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

Class Definition

import java.io.*;

public class BinaryTree<E> implements Serializable {
// Insert inner class Node<E> here

protected Node<E> root;

// Insert constructors and methods here
}

School of Computing and Data Science - 29/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

Constructors

public BinaryTree() {
root = null;

}

protected BinaryTree(Node<E> root) {
this.root = root;

}

School of Computing and Data Science - 30/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

Constructor

Given a data value and two subtrees to join under a new root

public BinaryTree(E data, BinaryTree<E> leftTree,
BinaryTree<E> rightTree) {

root = new Node<E>(data);
if (leftTree != null)

root.left = leftTree.root;
else

root.left = null;

if (rightTree != null)
root.right = rightTree.root;

else
root.right = null;

}

School of Computing and Data Science - 31/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

Getting Subtrees

public BinaryTree<E> getLeftSubtree() {
if (root != null && root.left != null)

return new BinaryTree<E>(root.left);
else

return null;
}

getRightSubtree is symmetrical.

School of Computing and Data Science - 32/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

isLeaf

public boolean isLeaf() {
return (root.left == null && root.right == null);

}

School of Computing and Data Science - 33/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

toString

Generate a string of data encountered in a preorder traversal with
indentation to show each value’s depth in the tree

public String toString() {
StringBuilder sb = new StringBuilder();
preOrderTraverse(root, 1, sb);
return sb.toString();

}

School of Computing and Data Science - 34/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

preOrderTraverse

private void preOrderTraverse(Node<E> node, int depth,
StringBuilder sb) {

for (int i = 1; i < depth; i++) {
sb.append(" "); // indentation

}
if (node == null) {

sb.append("null\n");
} else {

sb.append(node.toString());
sb.append("\n");
preOrderTraverse(node.left, depth + 1, sb);
preOrderTraverse(node.right, depth + 1, sb);

}
}

School of Computing and Data Science - 35/36 - Frank Kreimendahl | kreimendahlf@wit.edu



Introduction

Binary Trees

Traversal

BinaryTree
Class
Node Class

Example Tree

Implementation

toString Example

toString results
*

+
x

null
null

y
null
null

/
a

null
null

b
null
null

School of Computing and Data Science - 36/36 - Frank Kreimendahl | kreimendahlf@wit.edu


	Introduction
	Binary Trees

	Binary Trees
	Terminology
	Definition
	Expression Tree
	Huffman Tree
	Binary Search Tree

	Traversal
	Tree Traversal
	Algorithms
	Visualization
	Expression Traversal

	BinaryTree Class
	Node Class
	Example Tree
	Implementation


