
Recursion

Professor Frank Kreimendahl

School of Computing and Data Science

Wentworth Institute of Technology

October 5, 2022



Recursion
Recursion

Recursion Example

Design

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Recursion

School of Computing and Data Science - 2/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion
Recursion

Recursion Example

Design

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Introduction

Recursion can solve programming problems that are tough
to solve linearly
Recursion is a staple in many AI applications:

• playing strategy games
• proving math properties
• pattern recognition
• considering multiple branches in situations with many

decisions
Recursion can also replace iterative loops and solve linear
problems:

• Compute factorials
• Process data structures – strings, lists, etc.
• search through an array for a specific value

School of Computing and Data Science - 3/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion
Recursion

Recursion Example

Design

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Recursive Thinking

Recursion is a problem-solving approach that can solve
some problems with a small amount of code

Recursion decomposes a problem into one or more
simpler/smaller versions of itself

Nesting dolls – each doll has a smaller subdoll except the innermost,
smallest doll.

School of Computing and Data Science - 4/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion
Recursion

Recursion Example

Design

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Recursive Thinking

Recursive algorithm for processing nested figures. ‘Processing’
may entail gathering information or modifying dolls in some way.

1: if we are at the innermost doll then
2: do whatever work we need to the current doll
3: else
4: do whatever work we need to the current doll
5: process the dolls inside the current doll

School of Computing and Data Science - 5/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion
Recursion

Recursion Example

Design

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Recursion Example

Consider searching for a target value in a sorted array:

Compare the target value to the middle value in the array

If we didn’t find the target, we only have to look on one side
of the middle

How do we search one side? Run a search with the same
target, on the half our target might appear in

School of Computing and Data Science - 6/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion
Recursion

Recursion Example

Design

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Recursion Example

Recursive algorithm to search a sorted array. Returns an index
that the target appears at:

1: if array range is empty then
2: return -1 // target not in array
3: else if the middle element matches the target then
4: return the index of the middle element
5: else if target < middle element then
6: Consider an array that is the first half of the original array
7: return result of a search on that smaller array
8: else
9: Consider an array that is the second half of the original

array
10: return result of search on that smaller array

School of Computing and Data Science - 7/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion
Recursion

Recursion Example

Design

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Recursive Method Design

Identify a base case – the simplest problem of that type that
can be solved directly

Identify a way of slightly reducing a problem size,
progressing towards a base case
Problem size reductions often include:

• Decreasing an array range by 1
• Decreasing a list length by 1
• Splitting a range into left and right halves

Identify what work should be done to the current
array/list/data in recursive cases

School of Computing and Data Science - 8/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations
String Length

String Print

Reversed String

Tracing Recusion

Runtime Stack

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

String Operations

School of Computing and Data Science - 9/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations
String Length

String Print

Reversed String

Tracing Recusion

Runtime Stack

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

String Length

1: if string is empty then
2: the length is 0
3: else
4: the length is 1 + the length of the string starting after first

letter

School of Computing and Data Science - 10/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations
String Length

String Print

Reversed String

Tracing Recusion

Runtime Stack

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

String Length

/** Recursive method length
@param str The string
@return The length of the string

*/
public static int length(String str) {

if (str == null || str.equals(""))
return 0;

else
return 1 + length(str.substring(1));

}

School of Computing and Data Science - 11/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations
String Length

String Print

Reversed String

Tracing Recusion

Runtime Stack

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Printing a String

/** Recursive method printChars
post: The argument string is displayed,

one character per line
@param str The string

*/
public static void printChars(String str) {

if (str == null || str.equals(""))
return;

else {
System.out.println(str.charAt(0));
printChars(str.substring(1));

}
}

School of Computing and Data Science - 12/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations
String Length

String Print

Reversed String

Tracing Recusion

Runtime Stack

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Printing a String in Reverse

/** Recursive method printCharsReverse
post: The argument string is displayed in

reverse, one character per line
@param str The string

*/
public static void printCharsReverse(String str) {

if (str == null || str.equals(""))
return;

else {
printCharsReverse(str.substring(1));
System.out.println(str.charAt(0));

}
}

School of Computing and Data Science - 13/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations
String Length

String Print

Reversed String

Tracing Recusion

Runtime Stack

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Tracing Recursion

Showing initial calls (down the right side) and returned values (up the
left side)

School of Computing and Data Science - 14/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations
String Length

String Print

Reversed String

Tracing Recusion

Runtime Stack

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi

Java’s Runtime Stack

When a Java program runs, it maintains a stack called a
runtime stack

The stack stores activation record objects – one object for
each method that is currently running
An activation record contains:

• method arguments
• local variables
• the method to return to

Whenever a method is called, Java pushes a new activation
record onto the stack

Whenever a method returns, Java pops the top activation
record from the stack

School of Computing and Data Science - 15/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Recursion in Math

School of Computing and Data Science - 16/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Formulas

Many math functions can be defined recursively
Examples include:

• Factorial
• Powers
• Greatest Common Divisor

School of Computing and Data Science - 17/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Factorial

Factorial is defined as:

n! =

{
1, if n = 0
n∗ (n−1)!, n>0

n = 0 is the base case

n > 0 is the recursive case – note the (n−1)! call to the
same function in the definition

School of Computing and Data Science - 18/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Factorial

public static int factorial(int n) {
if (n == 0) // base case

return 1;
else // recursive case

return n * factorial(n – 1);
}

School of Computing and Data Science - 19/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Infinite Recursion

A factorial call with a negative argument will never
terminate

n never reaches 0

Each recursive call generates a new activation record

Infinite calls require infinite memory, which is an issue

When the runtime stack is full, Java throws a
StackOverflowError

School of Computing and Data Science - 20/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Calculating xn for n ≥ 0

xn =

{
1, if n = 0
x∗ xn−1, otherwise

/** Recursive power method
@param x The number being raised to a power
@param n The exponent
@return x raised to the power n

*/
public static double power(double x, int n) {

if (n == 0)
return 1;

else
return x * power(x, n – 1);

}

School of Computing and Data Science - 21/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Greatest Common Divisor

The greatest common divisor of two numbers is the largest
integer that divides both numbers

gcd(20,15) = 5

gcd(36,24) = 12

gcd(18,38) = 2

gcd(17,97) = 1

School of Computing and Data Science - 22/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Greatest Common Divisor

gcd(a,b) =

{
a, if b = 0
gcd(b,a mod b), otherwise

/** Recursive gcd method
@param m First number
@param n Second number
@return gcd(m, n)

*/
public static int gcd(int m, int n) {

if (n == 0)
return m;

else
return gcd(n, m % n);

}

School of Computing and Data Science - 23/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Iteration vs. Recursion

There are similarities between iterative loops and recursion

In iteration, a condition determines when to terminate the
loop

In recursion, a base case determines when to stop recursive
calls

The loop condition in iteration often corresponds to the base
case in recursion

The loop variable often corresponds to a parameter of the
recursive method

School of Computing and Data Science - 24/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Fibonacci Numbers

The Fibonacci sequence was described as an interesting
sequence of numbers

The sequence has a relationship with the Golden ratio,
Pascal’s triangle, plant growth, etc.

fib0 = 1

fib1 = 1

fibn = fibn−1 +fibn−2

School of Computing and Data Science - 25/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Fibonacci Numbers

/** Recursive Fibonacci method
@param n The index of the sequence
@return The Fibonacci number

*/
public static int fibonacci(int n) {

if (n <= 1)
return 1;

else
return fibonacci(n - 1) + fibonacci(n - 2);

}

School of Computing and Data Science - 26/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math
Formulas

Factorial

Infinite Recursion

Powers

gcd

Fibonacci

Recursive
Search

Data
Structures

Towers of
Hanoi

Fibonacci Recursive Call Tree

Visualizing which arguments fibonacci is recursively called with

School of Computing and Data Science - 27/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Recursive Search

School of Computing and Data Science - 28/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Linear Search

Problem: Search an array for a target value

Solution: Compare each element to the target; stop when a
match is found or continue until all elements have been
compared

Rather than a loop, use a recursive approach

Base cases:
• Empty array: return -1
• First element of array range matches target: return index

Recursive case: search the array except the first element in
the current range

School of Computing and Data Science - 29/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Linear Search

/** Recursive linear search
@param items The array being searched
@param target The item being searched for
@param pos The position of the current first element
@return The index of target in the array or -1

*/
public static int linSearch(Object[] items,

Object target, int pos) {
if (pos == items.length)

return -1;
else if (target.equals(items[pos]))

return pos;
else

return linSearch(items, target, pos + 1);
}

School of Computing and Data Science - 30/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Wrapper Method

A common companion to recursive methods: a wrapper method
with fewer parameters that calls the recursive method with
beginning values.

/** Wrapper for recursive linear search
@param items The array being searched
@param target The item being searched for
@return The index of target in the array or -1

*/
public static int linSearch(Object[] items,

Object target) {
return linSearch(items, target, 0);

}

School of Computing and Data Science - 31/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Binary Search

Problem: Search a sorted array for a target value

Solution: Compare a middle element to the target; stop when
a match is found or continue until all elements have been
compared

Rather than a loop, use a recursive approach

Base cases:
• Empty array: return -1
• Middle element of array range matches target: return index

Recursive case: search one half of the array range, based on
a comparison between middle element and target

School of Computing and Data Science - 32/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Binary Search Example

The target might appear anywhere in the array

School of Computing and Data Science - 33/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Binary Search Example

The target can only appear in the left half of the array

School of Computing and Data Science - 34/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Binary Search Example

Base case: the target is found

School of Computing and Data Science - 35/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Binary Search

/**
* Recursive binary search method.
* @param <T> The type of items being searched
* @param items The array being searched
* @param target The object being searched for
* @param first The subscript of the first element
* @param last The subscript of the last element
* @return The subscript of target if found; otherwise -1.
*/
private static <T> int binSearch(T[] items, Comparable<T> target,

int first, int last) {
if (first > last) {

return -1; // Base case for unsuccessful search.
} else {

int middle = (first + last) / 2; // Next probe index.
int compResult = target.compareTo(items[middle]);
if (compResult == 0) {

return middle; // Base case for successful search.
} else if (compResult < 0) {

return binSearch(items, target, first, middle - 1);
} else {

return binSearch(items, target, middle + 1, last);
}

}
}

School of Computing and Data Science - 36/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search
Linear Search

Binary Search

Data
Structures

Towers of
Hanoi

Wrapper Method

/** Wrapper for recursive binary search
@param items The array being searched
@param target The item being searched for
@return The index of target in the array or -1

*/
public static int binSearch(Object[] items,

Object target) {
return binSearch(items, target, 0,

items.length - 1);
}

School of Computing and Data Science - 37/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

Data Structures

School of Computing and Data Science - 38/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

Recursive Data Structures

Many data structures can be defined recursively

Linked lists and binary trees have simple recursive
definitions

Recursive methods can perform operations on recursive data
structures

Functional languages like LISP make heavy use of recursion
and recursive data structures

School of Computing and Data Science - 39/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

Linked List

A linked list is a collection of nodes with a base case and
recursive case

Base case: the list is empty

Recursive case: the list has a head node which references a
(potentially empty) list of nodes after it

Every list is either an empty list or a head node (at the front
of the list) followed by a linked list

School of Computing and Data Science - 40/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

Recursive size

/**
* Finds the size of a list.
* @param head The head of the current list
* @return The size of the current list
*/

private int size(Node<E> head) {
if (head == null) {

return 0;
} else {

return 1 + size(head.next);
}

}

School of Computing and Data Science - 41/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

Size Wrapper Method

/**
* Wrapper method for finding the size of a list.
* @return The size of the list
*/

public int size() {
return size(head);

}

School of Computing and Data Science - 42/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

Recursive toString

/**
* Returns the string representation of a list.
* @param head The head of the current list
* @return The state of the current list
*/

private String toString(Node<E> head) {
if (head == null) {

return "";
} else {

return head.data + "\n" + toString(head.next);
}

}

School of Computing and Data Science - 43/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

toString Wrapper Method

/**
* Wrapper method to return the string representation.
* @return The string representation of the list
*/

@Override
public String toString() {

return toString(head);
}

School of Computing and Data Science - 44/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

Recursive add

/**
* Adds a new node to the end of a list.
* @param head The head of the current list
* @param data The data for the new node
*/

private void add(Node<E> head, E data) {
// If the list has just one element, add to it.
if (head.next == null) {

head.next = new Node<>(data);
} else {

add(head.next, data); // Add to rest of list.
}

}

School of Computing and Data Science - 45/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures
Recursive Data
Structures

Linked List

size

toString

add

Towers of
Hanoi

Add Wrapper Method

/**
* Wrapper method for adding a new node to the end
* of a list.
* @param data The data for the new node
*/

public void add(E data) {
if (head == null) {

head = new Node<>(data); // List has 1 node.
} else {

add(head, data);
}

}

School of Computing and Data Science - 46/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi
Problem Description

Input/Output

3 Disks

General Case

Solution

Towers of Hanoi

School of Computing and Data Science - 47/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi
Problem Description

Input/Output

3 Disks

General Case

Solution

Problem Description

Goal: Move all disks from one tower to another

Rule: Only one disk can move at a time, from one tower to
another

Rule: A disk may only be moved onto a larger disk

School of Computing and Data Science - 48/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi
Problem Description

Input/Output

3 Disks

General Case

Solution

Input/Output

School of Computing and Data Science - 49/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi
Problem Description

Input/Output

3 Disks

General Case

Solution

3 Disks

The largest disk must be moved from the start to destination, so we will
somehow move the other disks to the temporary tower.

School of Computing and Data Science - 50/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi
Problem Description

Input/Output

3 Disks

General Case

Solution

General Case

Base case: solve a tower with one disk – move it from start
tower to destination tower
Recursive case:

1 Move all disks except the largest from start tower to
temporary tower

2 Move the largest disk from start to destination tower
3 Move all the smaller disks from the temporary tower to the

destination tower

How can we move all the smaller disks? By solving a
smaller Towers of Hanoi problem!

School of Computing and Data Science - 51/52 - Frank Kreimendahl | kreimendahlf@wit.edu



Recursion

String
Operations

Recursion in
Math

Recursive
Search

Data
Structures

Towers of
Hanoi
Problem Description

Input/Output

3 Disks

General Case

Solution

Solution Code

/**
* Recursive method for "moving" disks.
* @pre startPeg, destPeg, tempPeg are different.
* @param n is the number of disks
* @return A string with all the required disk moves
*/

public static String showMoves(int n, char startPeg,
char destPeg, char tempPeg) {

if (n == 1) { // base case
return "Move disk 1 from peg " + startPeg

+ " to peg " + destPeg + "\n";
} else { // recursive case

String ret = showMoves(n - 1, startPeg, tempPeg, destPeg)
ret += "Move disk " + n + " from peg " + startPeg

+ " to peg " + destPeg + "\n"
ret += showMoves(n - 1, tempPeg, destPeg, startPeg);
return ret;

}
}

School of Computing and Data Science - 52/52 - Frank Kreimendahl | kreimendahlf@wit.edu


	Recursion
	Recursion
	Recursion Example
	Design

	String Operations
	String Length
	String Print
	Reversed String
	Tracing Recusion
	Runtime Stack

	Recursion in Math
	Formulas
	Factorial
	Infinite Recursion
	Powers
	gcd
	Fibonacci

	Recursive Search
	Linear Search
	Binary Search

	Data Structures
	Recursive Data Structures
	Linked List
	size
	toString
	add

	Towers of Hanoi
	Problem Description
	Input/Output
	3 Disks
	General Case
	Solution


