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A queue is a fundamental data structure in computer science
A queue works like a queue:

• Only the front item can be removed
• Items can only be inserted at the back
• Only one item can be inserted or extracted at a time

The front of the queue is the least recently added item in the
queue

The queue is a First-in, First-out (FIFO) data structure
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Queue Usage

Operating Systems use queues for a variety of reasons:

Keeping track of program requests for a limited resource

Ensuring programs get served in a fair order

CPU, Network, Keyboard input, etc.

Windows Print Queue
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Queue Interface

The Queue interface implements the Collection interface in
Java, which means any Java implementation must have an iterator
as well.
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Double-Linked List Implementation

Use a double-linked list to implement a Queue interface

List’s head corresponds to Queue’s front

List’s tail corresponds to Queue’s back
offer and remove are both efficient

• Both can be completed without traversing through an entire
list

• Efficient operations on a data structure are important for
fast-executing programs
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Queue Implementation

List with queue ends marked

offer(E item) calls a list’s add(E item)

remove() and poll() call a list’s remove(0)

peek() and element call a list’s get(0)
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Circular Array Implementation

popping from the front of a regular array is inefficient – we
need to shift all of the values forward, one at a time

solve this issue with a “circular array”
A circular array holds several pieces of important
information:

• The array with all the items
• A back index where the most recent value was pushed
• A front index where the next value can be popped (not

necessarily 0)
• Current size and capacity
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Circular Array Example

A full queue, with separate variables to maintain the front/back indices

School of Computing and Data Science - 9/16 - Frank Kreimendahl | kreimendahlf@wit.edu



Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Circular Array Example

Removing from the queue, with an index update
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Circular Array Example

Adding “A” to the queue, with an index update
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Constructor

public ArrayQueue(int initCapacity) {
capacity = initCapacity;
theData = (E[]) new Object[capacity];
front = 0;
rear = capacity – 1;
size = 0;

}
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offer

public boolean offer(E item) {
if (size == capacity)

reallocate();
size++;
rear = (rear + 1) % capacity;
theData[rear] = item;
return true;

}
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poll

public E poll() {
if (size == 0)

return null;
E result = theData[front];
front = (front + 1) % capacity;
size--;
return result;

}
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Iter

private class Iter implements Iterator<E> {
private int index;
private int count = 0;

public Iter() {
index = front;

}

@Override
public boolean hasNext() {

return count < size;
}

....
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Iter

@Override
public E next() {

if (!hasNext())
throw new NoSuchElementException();

E returnValue = theData[index];
index = (index + 1) % capacity;
count++;
return returnValue;

}

@Override
public void remove() {

throw new UnsupportedOperationException();
}

}
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