
Queues

Professor Frank Kreimendahl

School of Computing and Data Science

Wentworth Institute of Technology

October 3, 2022

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator Queue ADT

School of Computing and Data Science - 2/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Queue ADT

A queue is a fundamental data structure in computer science
A queue works like a queue:

• Only the front item can be removed
• Items can only be inserted at the back
• Only one item can be inserted or extracted at a time

The front of the queue is the least recently added item in the
queue

The queue is a First-in, First-out (FIFO) data structure

School of Computing and Data Science - 3/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Queue Usage

Operating Systems use queues for a variety of reasons:

Keeping track of program requests for a limited resource

Ensuring programs get served in a fair order

CPU, Network, Keyboard input, etc.

Windows Print Queue

School of Computing and Data Science - 4/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Queue Interface

The Queue interface implements the Collection interface in
Java, which means any Java implementation must have an iterator
as well.

School of Computing and Data Science - 5/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Double-Linked List Implementation

Use a double-linked list to implement a Queue interface

List’s head corresponds to Queue’s front

List’s tail corresponds to Queue’s back
offer and remove are both efficient

• Both can be completed without traversing through an entire
list

• Efficient operations on a data structure are important for
fast-executing programs

School of Computing and Data Science - 6/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Queue Implementation

List with queue ends marked

offer(E item) calls a list’s add(E item)

remove() and poll() call a list’s remove(0)

peek() and element call a list’s get(0)

School of Computing and Data Science - 7/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Circular Array Implementation

popping from the front of a regular array is inefficient – we
need to shift all of the values forward, one at a time

solve this issue with a “circular array”
A circular array holds several pieces of important
information:

• The array with all the items
• A back index where the most recent value was pushed
• A front index where the next value can be popped (not

necessarily 0)
• Current size and capacity

School of Computing and Data Science - 8/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Circular Array Example

A full queue, with separate variables to maintain the front/back indices

School of Computing and Data Science - 9/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Circular Array Example

Removing from the queue, with an index update

School of Computing and Data Science - 10/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Circular Array Example

Adding “A” to the queue, with an index update

School of Computing and Data Science - 11/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Constructor

public ArrayQueue(int initCapacity) {
capacity = initCapacity;
theData = (E[]) new Object[capacity];
front = 0;
rear = capacity – 1;
size = 0;

}

School of Computing and Data Science - 12/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

offer

public boolean offer(E item) {
if (size == capacity)

reallocate();
size++;
rear = (rear + 1) % capacity;
theData[rear] = item;
return true;

}

School of Computing and Data Science - 13/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

poll

public E poll() {
if (size == 0)

return null;
E result = theData[front];
front = (front + 1) % capacity;
size--;
return result;

}

School of Computing and Data Science - 14/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Iter

private class Iter implements Iterator<E> {
private int index;
private int count = 0;

public Iter() {
index = front;

}

@Override
public boolean hasNext() {

return count < size;
}

....

School of Computing and Data Science - 15/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

Interface

List Implementation

Array Implementation

Constructor

offer

poll

Iterator

Iter

@Override
public E next() {

if (!hasNext())
throw new NoSuchElementException();

E returnValue = theData[index];
index = (index + 1) % capacity;
count++;
return returnValue;

}

@Override
public void remove() {

throw new UnsupportedOperationException();
}

}

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu

	Queue ADT
	Queue ADT
	Interface
	List Implementation
	Array Implementation
	Constructor
	offer
	poll
	Iterator

