Queues

&V\T WO/P;.

g

@ Professor Frank Kreimendahl

7

hool of Computing and Data Science

o
~
O
>

Wentworth Institute of Technology

October 3, 2022

Queue ADT

Interface
List Implementation
Array Implementation

Queue ADT

School of Computing and Data Science

-2/16 -

Frank Kreimendahl | kreimendahlf@wit.edu

Queue ADT
Queue ADT

m A queue is a fundamental data structure in computer science
m A queue works like a queue:

® Only the front item can be removed
® Jtems can only be inserted at the back
® Only one item can be inserted or extracted at a time

m The front of the queue is the least recently added item in the
queue

m The queue is a First-in, First-out (FIFO) data structure

School of Computing and Data Science -3/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Queue Usage

Queue ADT . .
Quene ADT Operating Systems use queues for a variety of reasons:

List Implementation

m Keeping track of program requests for a limited resource
m Ensuring programs get served in a fair order
m CPU, Network, Keyboard input, etc.

&% HP LaserJet 4050 Series PS - Use Printer Offline

=10| x|
Printer Document Yiew Help
Document Name [Status [wner [Pages [sie [submitted I
=] Microsoft Word - Queues_Paul_1007.doc Paul Welfgang 52 9.75 MB 1:53:18 PM 10/7/2003
] Microsoft Word - Stacks.doc Paul Wolfgang 46 9.05 MB 1:53:57 PM 10/7/2003
| Microsoft Word - Trees2.doc Paul Wolfgang 54 38.4 MB 1:54:41 PM 10/7/2003
4 |
[3 document(s) in queue [7

Windows Print Queue

School of Computing and Data Science -4/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Queue Interface

Queue ADT

Method Behavior

boolean offer(E 1item) Inserts item at the rear of the queue. Returns true if successful; returns
false if the item could not be inserted.

E remove() Removes the entry at the front of the queue and returns it if the queue is
not empty. If the queue is empty, throws a NoSuchElementException.

E pol1Q) Removes the entry at the front of the queue and returns it; returns nul1 if
the queue is empty.

E peek() Returns the entry at the front of the queue without removing it; returns
nul1 if the queue is empty.

E element() Returns the entry at the front of the queue without removing it. If the
queue is empty, throws a NoSuchETlementException.

The Queue interface implements the Collection interface in
Java, which means any Java implementation must have an iterator
as well.

School of Computing and Data Science -5/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Double-Linked List Implementation

Queue ADT

m Use a double-linked list to implement a Queue interface
m List’s head corresponds to Queue’s front

m List’s tail corresponds to Queue’s back
m offer and remove are both efficient
® Both can be completed without traversing through an entire
list
e Efficient operations on a data structure are important for
fast-executing programs

School of Computing and Data Science -6/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Queue Implementation

Queue ADT

FRONT BACK

next = E—j next = [

head = 3 next = [-
tail = 3 prev =] prev = 3+ prev = [3+
data = “vibe” W data = “with” data = “queues” 1

List with queue ends marked

m offer(E item) calls alist’s add(E item)
m remove () and poll() call a list’s remove (0)

m peek() and element call a list’s get (0)

School of Computing and Data Science -7/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Circular Array Implementation

Queue ADT

m popping from the front of a regular array is inefficient — we
need to shift all of the values forward, one at a time

m solve this issue with a “circular array”

m A circular array holds several pieces of important
information:
® The array with all the items
® A back index where the most recent value was pushed
® A front index where the next value can be popped (not
necessarily 0)
® Current size and capacity

School of Computing and Data Science -8/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Circular Array Example

Queue ADT
e ADT

Inter

List Implementatior

Array Implementation

front - g size -
+ capacity =
/

A full queue, with separate variables to maintain the front/back indices

School of Computing and Data Science -9/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Circular Array Example

Queue ADT
e ADT

Inter

List Implementatior

Array Implementation

& size = [4]
front = *
+ capacity =
/
rear = [4} -

Removing from the queue, with an index update

School of Computing and Data Science - 10/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4 Circular Array Example

Queue ADT
\DT

Interface

List Implementatior

Array Implementation

rear A size

front =

:

L}
I

+ capacity

L |
Adding “A” to the queue, with an index update

School of Computing and Data Science -11/16 - Frank Kreimendahl | kreimendahlf@wit.edu

4

Constructor

Queue ADT

Queue ADT

public ArrayQueue(int initCapacity) {
capacity = initCapacity;
theData = (E[]) new Object[capacity];

front = O;
rear = capacity - 1;
size = 0;

School of Computing and Data Science -12/16 - Frank Kreimendahl | kreimendahlf@wit.edu

offer

public boolean offer(E item) {

if (size == capacity)
reallocate();
sizet++;

rear = (rear + 1) % capacity;
theData[rear] = item;
return true;

School of Computing and Data Science - 13/16 - Frank Kreimendahl | kreimendahlf@wit.edu

poll

public E poll() {
= 0)

return null;
E result = theData[front];
front = (front + 1) % capacity;
size——;
return result;

if (size

School of Computing and Data Science - 14/16 - Frank Kreimendahl | kreimendahlf@wit.edu

Iter

private class Iter implements Iterator<E> {
private int index;
private int count = O;

e public Iter() {
index = front;

}

@0verride
public boolean hasNext() {
return count < size;

3

School of Computing and Data Science - 15/16 - Frank Kreimendahl | kreimendahlf@wit.edu

" Iter

Queue ADT @Override

Q \DT

public E next() {
if ('hasNext())
throw new NoSuchElementException();
E returnValue = theDatal[index];
index = (index + 1) % capacity;
count++;
return returnValue;

@0verride
public void remove() {
throw new UnsupportedOperationException();

}

}

School of Computing and Data Science - 16/16 - Frank Kreimendahl | kreimendahlf@wit.edu

	Queue ADT
	Queue ADT
	Interface
	List Implementation
	Array Implementation
	Constructor
	offer
	poll
	Iterator

