
Stacks

Professor Frank Kreimendahl

School of Computing and Data Science

Wentworth Institute of Technology

September 26, 2022



Stack ADT
Stack ADT

Specification

Interface

Example

Array Imple-
mentation

Stack
Applications Stack ADT

School of Computing and Data Science - 2/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT
Stack ADT

Specification

Interface

Example

Array Imple-
mentation

Stack
Applications

Stack ADT

A stack is a fundamental data structure in computer science
A stack behaves similarly to a Pez dispenser:
• Only the top item can be accessed
• Only one item can be inserted or extracted at a time

The top of the stack is the most recently added item in the
stack

The stack is a Last-in, First-out (LIFO) data structure

School of Computing and Data Science - 3/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT
Stack ADT

Specification

Interface

Example

Array Imple-
mentation

Stack
Applications

Stack Specification

We can only interact with the top of the stack (no random
access), so there are not many operations possible
Stack operations:
• empty(): determine if a stack is empty
• peek(): get the top item on the stack
• pop(): remove and return the top item on the stack
• push(E): put a new item on top of the stack and return that

item

School of Computing and Data Science - 4/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT
Stack ADT

Specification

Interface

Example

Array Imple-
mentation

Stack
Applications

Stack Interface

public interface StackInt<E> {
E push(E obj);
E peek();
E pop();
boolean isEmpty();

}

School of Computing and Data Science - 5/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT
Stack ADT

Specification

Interface

Example

Array Imple-
mentation

Stack
Applications

Example Peek

Rich was added longest
ago, and Jonathan most
recently

Jonathan is at the top of
the stack, which is where
every interaction takes
place

String last =
names.peek(); would
result in last referencing
the “Jonathan” string

Stack of Strings

School of Computing and Data Science - 6/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT
Stack ADT

Specification

Interface

Example

Array Imple-
mentation

Stack
Applications

Example Pop

Before pop()
After pop()

String temp = names.pop(); modifies the stack and
results in temp referencing the “Jonathan” string

School of Computing and Data Science - 7/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT
Stack ADT

Specification

Interface

Example

Array Imple-
mentation

Stack
Applications

Example Push

Before push(“Philip”)
After push(“Philip”)

names.push(“Philip”); modifies the stack

School of Computing and Data Science - 8/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation
Array Implementation

Stack
Applications

Array Implementation

School of Computing and Data Science - 9/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation
Array Implementation

Stack
Applications

Array Implementation

We can use an array to store the data held in a stack

Treat the end of the list as the head of the stack – it is the
most efficient to modify

What list operation is similar to push?

What list operation is similar to pop?

We will actually use an ArrayList to keep the data, since it
has operations we can translate

School of Computing and Data Science - 10/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation
Array Implementation

Stack
Applications

Class Definition

public class ListStack<E> implements StackInt<E> {
private List<E> theData;

public ListStack() {
theData = new ArrayList<>();

}

// stack interface implementations
}

School of Computing and Data Science - 11/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation
Array Implementation

Stack
Applications

push and pop

public E push(E obj) {
theData.add(obj);
return obj;

}

public E pop() {
if (isEmpty())

throw new NoSuchElementException();
return theData.remove(theData.size() — 1);

}

School of Computing and Data Science - 12/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation
Array Implementation

Stack
Applications

peek and isEmpty

public E peek() {
if (isEmpty())

throw new NoSuchElementException();
return theData.get(theData.size() — 1);

}

public boolean isEmpty() {
return theData.isEmpty();

}

School of Computing and Data Science - 13/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Stack Applications

School of Computing and Data Science - 14/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Checking for Balanced Parentheses

(a+b∗ (c/(d− e)))+(d/e)

Computers are good at reading and solving arithmetic
expressions

We need to describe to a program what expressions are valid
or invalid

Balanced parentheses are important in an expression being
valid – we can validate an expression’s parenthesis use

We can use stacks to verify if an expression is valid or not

School of Computing and Data Science - 15/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

isBalanced Algorithm

ISBALANCED(expression)
1: s← empty stack
2: index← 0
3: while index < expression.len() do
4: if next character == ‘(’ then
5: s.push(next character)
6: else if next character == ‘)’ then
7: if s.isEmpty() then
8: return false
9: s.pop()

10: increment index
11: return s.isEmpty()

School of Computing and Data Science - 16/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

isBalanced Testing

Test a variety of both valid and invalid inputs

Test both nested and sequential parentheses

Test unbalanced parentheses

Test no parentheses

School of Computing and Data Science - 17/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Infix To Postfix Converter

Infix notation is standard expression notation – binary
operators are between their operands

Postfix is easier for a computer to process

Postfix has another useful property: no need for parentheses!

We will use a stack to convert from infix to postfix

School of Computing and Data Science - 18/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Conversion Example

Given the infix equation w−5.1/sum∗2, convert to postfix

What is the postfix form?

How can we build it in an automated way?

How can we build it so that we only have to scan through the
infix equation once?

School of Computing and Data Science - 19/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

convert pseudocode

CONVERT(expression)
1: postfix← empty StringBuilder
2: operator stack← empty Stack
3: while expression has tokens left do
4: t← next token
5: if t is an operand then
6: append t to postfix
7: else if t is an operator then
8: PROCESSOPERATOR(t)
9: else Syntax error

10: pop all operators off stack and append to postfix
11: return postfix

School of Computing and Data Science - 20/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

processOperator Pseudocode

PROCESSOPERATOR(t)
1: if operator stack is empty then
2: push t onto operator stack
3: else
4: topOp← top of operator stack
5: if t precedence > topOp precedence then
6: push t onto operator stack
7: else
8: while stack is not empty and t precedence ≤ topOp

precedence do
9: pop topOp and append to postfix

10: if operator stack is not empty then
11: topOp← top of operator stack
12: push t onto operator stack

School of Computing and Data Science - 21/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Solution Breakdown

Mostly the code is if/else statements in a loop:
• operands go directly to output
• operators get pushed onto the stack
• operators already on the stack might get popped
• the stack is emptied to the output at the end

School of Computing and Data Science - 22/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Running the Converter

School of Computing and Data Science - 23/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Running the Converter

School of Computing and Data Science - 24/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Evaluate Postfix Expressions

Now that we can convert infix to postfix, how can we find
the results of the expression?

Using a stack, of course!

We will scan through the postfix expression only once to
calculate the result

This means that we can evaluate any infix expression by
scanning through an expression just twice – no jumping
around in the expression or repeated scans

School of Computing and Data Science - 25/26 - Frank Kreimendahl | kreimendahlf@wit.edu



Stack ADT

Array Imple-
mentation

Stack
Applications
Balanced Parentheses

isBalanced

Testing

Postfix Generator

Postfix Evaluator

Postfix Evaluation Algorithm

EVALUATE(expression)
1: operand stack← empty Stack
2: while expression has tokens left do
3: t← next token
4: if t is an operand then
5: push t onto operand stack
6: else if t is an operator then
7: pop right operand off stack
8: pop left operand off stack
9: evaluate operator with two operands

10: push result onto stack
11: return popped stack result

School of Computing and Data Science - 26/26 - Frank Kreimendahl | kreimendahlf@wit.edu


	Stack ADT
	Stack ADT
	Specification
	Interface
	Example

	Array Implementation
	Array Implementation

	Stack Applications
	Balanced Parentheses
	isBalanced
	Testing
	Postfix Generator
	Postfix Evaluator


