
Graphs

Professor Frank Kreimendahl

School of Computing and Data Science

Wentworth Institute of Technology

November 14, 2022

Graph ADT
Graphs

Terminology

Graph Class

Graph ADT

School of Computing and Data Science - 2/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT
Graphs

Terminology

Graph Class

Graphs

Trees describe relationships in a strict hierarchy

Graphs describe networks with more interconnected
relationships
Graphs can represent many useful things:

• Devices on an electronic network
• Components on a silicon chip
• Road maps
• Course prerequisites
• States and transitions in a system

School of Computing and Data Science - 3/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology
Definition

Example

Visualization

Edge Features

More Terminology

Edge Features

Graph Class Terminology

School of Computing and Data Science - 4/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology
Definition

Example

Visualization

Edge Features

More Terminology

Edge Features

Graph Class

Definition

A graph is a data structure that consists of a set of vertices
(or nodes) and a set of edges (relations) between pairs of
vertices

Edges represent paths or connections between vertices

Both the set of vertices and the set of edges must be finite

Either set may be empty

School of Computing and Data Science - 5/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology
Definition

Example

Visualization

Edge Features

More Terminology

Edge Features

Graph Class

Example

V = {A, B, C, D, E}
E = {{A, B}, {A, D}, {C, E}, {D, E}}

Each edge is represented by the two vertices it connects

If there is an edge between vertices x and y, there is a path
from x to y and vice versa

School of Computing and Data Science - 6/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology
Definition

Example

Visualization

Edge Features

More Terminology

Edge Features

Graph Class

Visualization

The physical layout of the vertices and their labeling is not
relevant

Two equivalent graphs

School of Computing and Data Science - 7/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology
Definition

Example

Visualization

Edge Features

More Terminology

Edge Features

Graph Class

Edge Features

Edges are undirected if they represent a transition in both
directions
Edges are directed if they represent a transition in only one
direction
Edges are unweighted if all transitions’ costs are equal
Edges are weighted if there are different costs associated
with different transitions

Directed graph with arrowed edges

School of Computing and Data Science - 8/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology
Definition

Example

Visualization

Edge Features

More Terminology

Edge Features

Graph Class

More Terminology

Two vertices are adjacent and neighbors if there is an edge
from one vertex to the other

A path is a sequence of edges between adjacent vertices

A simple path is a sequence with all unique edges and
vertices (except maybe the first/last vertex)

A cycle is a simple path with the same start and end vertex

School of Computing and Data Science - 9/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology
Definition

Example

Visualization

Edge Features

More Terminology

Edge Features

Graph Class

Edge Features

A graph is connected if there is a path from every vertex to
every other vertex
A connected component is a subset of vertices that are
connected

An unconnected graph with three connected components

School of Computing and Data Science - 10/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Graph Class

School of Computing and Data Science - 11/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Requirements

Java does not provide a Graph data structure
Desired operations:

• Create a graph with a specific number of vertices
• Iterate through all vertices
• Iterate through all neighbors of a vertex
• Insert an edge
• Iterate through all edges
• Check if an edge exists
• Determine edge weight

School of Computing and Data Science - 12/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Graph Class

School of Computing and Data Science - 13/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Vertices and Edges

Vertex representations:
• Each vertex is represented by an integer, starting at 0

Edge class:
• Requires source vertex
• Requires destination vertex
• Requires weight
• Edges are directed so we will use two edges to represent a

single edge in an undirected graph

School of Computing and Data Science - 14/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Representations

There are two common graph representations

Depending on the intended use, one or the other is more
efficient
Adjacency list:

• Uses an array of lists
• Each element represents a vertex, and each entry in its list

represents adjacent vertices
Adjacency matrix:

• Uses a square two-dimensional array
• Each element records whether there is a connection from the

vertex in that row to the vertex in that column
• Elements can hold weights as well

School of Computing and Data Science - 15/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Adjacency List

Array of linked lists that hold adjancent nodes

School of Computing and Data Science - 16/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Adjacency List

Undirected graph with edges going both ways

School of Computing and Data Science - 17/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

AbstractGraph Class

School of Computing and Data Science - 18/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

ListGraph Class

School of Computing and Data Science - 19/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Data fields

import java.util.*;

/** A ListGraph is an extension of the
AbstractGraph abstract class that uses an array
of lists to represent the edges. */

public class ListGraph extends AbstractGraph {
// Data Field
/** An array of Lists to contain the edges that

originate with each vertex. */
private List<Edge>[] edges;

. . .
}

School of Computing and Data Science - 20/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Constructor

/** Construct a graph with the specified number of
vertices and directionality.
@param numV The number of vertices
@param directed The directionality flag

*/
public ListGraph(int numV, boolean directed) {

super(numV, directed);
edges = new List[numV];
for (int i = 0; i < numV; i++) {

edges[i] = new LinkedList<Edge>();
}

}

School of Computing and Data Science - 21/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

isEdge

/** Determine whether an edge exists.
@param source The source vertex
@param dest The destination vertex
@return true if there is a (src, dst) edge

*/
public boolean isEdge(int src, int dst) {

return edges[src].contains(new Edge(src, dst));
}

School of Computing and Data Science - 22/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

insert and edgeIterator

/** Insert a new edge into the graph.
@param edge The new edge

*/
public void insert(Edge edge) {

edges[edge.getSource()].add(edge);
if (!isDirected()) {
edges[edge.getDest()].add(new Edge(edge.getDest(),

edge.getSource(),
edge.getWeight()));

}
}

public Iterator<Edge> edgeIterator(int source) {
return edges[source].iterator();

}

School of Computing and Data Science - 23/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

getEdge

/** Get the edge between two vertices. If an
edge does not exist, an Edge with a weight
of Double.POSITIVE_INFINITY is returned.
@param source The source
@param dest The destination
@return the edge between these two vertices

*/
public Edge getEdge(int source, int dest) {

Edge target =
new Edge(source, dest, Double.POSITIVE_INFINITY);

for (Edge edge : edges[source]) {
if (edge.equals(target))

return edge; // Desired edge found, return it.
}
return target; // Desired edge not found.

}

School of Computing and Data Science - 24/25 - Frank Kreimendahl | kreimendahlf@wit.edu

Graph ADT

Terminology

Graph Class
Requirements

Graph Class

Vertices and Edges

Representations

Adjacency List

AbstractGraph

ListGraph

Graph Algorithms

Graph Algorithms

Graphs support a variety of analysis to solve many problems

Many algorithms follow common forms, though the
specifics vary

ANALYZEGRAPH(G)
1: for vertex u in G do
2: for each vertex v adjacent to u do
3: Do something with vertex v or edge (u,v)

School of Computing and Data Science - 25/25 - Frank Kreimendahl | kreimendahlf@wit.edu

	Graph ADT
	Graphs

	Terminology
	Definition
	Example
	Visualization
	Edge Features
	More Terminology
	Edge Features

	Graph Class
	Requirements
	Graph Class
	Vertices and Edges
	Representations
	Adjacency List
	AbstractGraph
	ListGraph
	Graph Algorithms

