
Hash Tables

Professor Frank Kreimendahl

School of Computing and Data Science

Wentworth Institute of Technology

November 9, 2022

Hash Table
Hash Table Description

Definition

Example

Hash Codes

HashCode

Collisions

Open
Addressing

Chaining

KWHashMap

Hash Table

School of Computing and Data Science - 2/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table
Hash Table Description

Definition

Example

Hash Codes

HashCode

Collisions

Open
Addressing

Chaining

KWHashMap

Hash Table Description

Hash tables are implementations of data storage with useful
properties:
• Used to implement sets
• Used to implement maps
• Hash tables store keys (and maybe values)
• These keys (and associated values) are directly accessible
• Similar to an index in an array, there’s only one location an

entry might be in a hash table

School of Computing and Data Science - 3/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table
Hash Table Description

Definition

Example

Hash Codes

HashCode

Collisions

Open
Addressing

Chaining

KWHashMap

Definition

A Hash table consists of two necessary parts:
• An array to hold values – the table
• A hash function which translates a key to an integer value

called a hash code
• The integer value is used as an array index – Java arrays only

ever use ints as an index

School of Computing and Data Science - 4/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table
Hash Table Description

Definition

Example

Hash Codes

HashCode

Collisions

Open
Addressing

Chaining

KWHashMap

Example Hash Function

Consider an array of size 20, and characters for keys

An example hash function could be: convert the character to
ASCII, and then mod the result by 20

With this function, all the resulting indices are between
0−19, and each character shows up at a predictable location

For example, A = 65, so its index is 65%20 = 5. a = 97, so
its index is 97%20 = 17

We can store/retrieve these characters by looking directly at
their associated index, no searching needed

Is there an issue with this?

School of Computing and Data Science - 5/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table
Hash Table Description

Definition

Example

Hash Codes

HashCode

Collisions

Open
Addressing

Chaining

KWHashMap

Hash Codes

Usually keys are strings of letters/numbers

The number of possible keys is much larger than the table

Different keys can generate the same hash code, causing a
collision

A good hash function distributes all of the keys evenly
across possible indices

Researchers have written better hash functions already – we
typically use those rather than create our own

School of Computing and Data Science - 6/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table
Hash Table Description

Definition

Example

Hash Codes

HashCode

Collisions

Open
Addressing

Chaining

KWHashMap

Java HashCode Method

Java’s string hash function is called with the .HashCode()
method

Both the individual characters and their position in the string
have an effect on the hash code

string s has the hash code
s0×31n−1 + s1×31n−2 + · · ·+ sn−1

Example: “Cat”.HashCode() =
‘C’×312 + ‘a’×31+ ‘t’ = 67510

31 is chosen as a multiplier because it is prime, which gives
good distribution properties usually

School of Computing and Data Science - 7/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table
Hash Table Description

Definition

Example

Hash Codes

HashCode

Collisions

Open
Addressing

Chaining

KWHashMap

Collisions

.HashCode() distributes hash codes evenly, so one index
isn’t more likely, given a range of keys

The probability of a collision is based on how full the table is

There is always a non-zero chance of a collision

We will look at two ways to handle collisions without losing
information

School of Computing and Data Science - 8/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Open Addressing

School of Computing and Data Science - 9/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Open Addressing

Open addressing can be used to find/add items to a hash
table without collision issues
If there is a collision inserting a key, use linear probing to
find other possible spots for the key:
• Increment the index by 1 until there is a null element
• Store the key there

If there is a collision searching for a key, follow the same
steps:
• Increment the index by 1 until the key is found or there is a

null element

School of Computing and Data Science - 10/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Issues

What happens if you reach the end of the array?
• Treat the array like a circular array
• Set the index to 0 and then start incrementing again

What happens if the array is full?
• We will search for a null spot forever
• Instead, detect an end condition: when we get back to our

starting spot

Avoid a full table by resizing after a certain load factor

School of Computing and Data Science - 11/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Example

Key "Tom" "Harry" "Sam" "Pete"
hashCode() 84274 69496448 82879 2484038
hashCode() % 5 4 3 4 3

Inserting Tom:

Tom

School of Computing and Data Science - 12/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Example

Key "Tom" "Harry" "Sam" "Pete"
hashCode() 84274 69496448 82879 2484038
hashCode() % 5 4 3 4 3

Inserting Harry:

Harry Tom

School of Computing and Data Science - 13/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Example

Key "Tom" "Harry" "Sam" "Pete"
hashCode() 84274 69496448 82879 2484038
hashCode() % 5 4 3 4 3

Inserting Sam:

Sam Harry Tom

School of Computing and Data Science - 14/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Example

Key "Tom" "Harry" "Sam" "Pete"
hashCode() 84274 69496448 82879 2484038
hashCode() % 5 4 3 4 3

Inserting Pete:

Sam Pete Harry Tom

School of Computing and Data Science - 15/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Deletion

We can’t just set an index to null to delete that item with
open addressing
What if there had been a collision?
• Set index to a dummy node – space is available for insertion

but you should continue searching for find operations

The dummy node can be replaced with a new key if that key
is not in the table

School of Computing and Data Science - 16/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Resizing

More collisions means more steps for each insert/find/delete
operation
Move all elements to a larger table so there are fewer
collisions:
• Create a larger array (ideally with a prime number of

elements)
• Insert all of the elements in the current array into the new one
• Note that this requires rehashing – the indices might change

with a different table size
• Do not copy dummy values

School of Computing and Data Science - 17/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Resizing Example

Key "Tom" "Harry" "Sam" "Pete"
hashCode() 84274 69496448 82879 2484038
hashCode() % 5 4 3 4 3
hashCode() % 11 3 10 5 7

Sam Pete Harry Tom

Reinsert keys at new indices:

Tom Sam Pete Harry

School of Computing and Data Science - 18/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing
Open Addressing

Issues

Example

Deletion

Resizing

Probing

Probing

Chaining

KWHashMap

Probing

Linear probing leads to clusters of values in adjacent indices,
which is inefficient

Quadratic probing changes the increments when there is a
collision

Use square increments: +12,+22,+32 . . . , using a circular
array

This spreads out colliding keys

Issue: This sequence doesn’t reach every index

Solution: If the array has a prime size and enough free
space, it will succeed

School of Computing and Data Science - 19/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining
Chaining

Advantages

Performance

KWHashMap Chaining

School of Computing and Data Science - 20/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining
Chaining

Advantages

Performance

KWHashMap

Chaining Description

Chaining is an alternative solution to hash code collisions
Instead of each element in the table holding a value, each
element holds a linked list
These linked lists are called buckets

School of Computing and Data Science - 21/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining
Chaining

Advantages

Performance

KWHashMap

Advantages

You only need to examine keys in a single bucket

You can store more unique keys than the hash table size

Insertion is simple – if the key is not in its bucket, insert it at
the beginning of the list

Deletion is simple – remove the key from the linked list

School of Computing and Data Science - 22/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining
Chaining

Advantages

Performance

KWHashMap

Performance

For both open addressing and chaining hash tables, the load
factor measures the number of non-null elements divided by
table size

The load factor determines how quickly we can
insert/find/delete because it determines the chance of a
collision

Open addressing works more slowly than chaining when
load factors are high

Open addressing doesn’t require linked lists so it is more
memory-efficient

When load factor is low, a hash table is as efficient as
accessing values in an array, which is as efficient as possible

School of Computing and Data Science - 23/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining

KWHashMap
Interface

Entry Class

get operation

put operation

remove operation

Data Fields

KWHashMap

School of Computing and Data Science - 24/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining

KWHashMap
Interface

Entry Class

get operation

put operation

remove operation

Data Fields

KWHashMap Interface

School of Computing and Data Science - 25/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining

KWHashMap
Interface

Entry Class

get operation

put operation

remove operation

Data Fields

Entry Class

Class to hold key-value pairs for entries in a hashtable

School of Computing and Data Science - 26/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining

KWHashMap
Interface

Entry Class

get operation

put operation

remove operation

Data Fields

get operation

GET(key)
1: index← key.hashCode() % table.length
2: if index is negative then
3: index += table.length
4: if table[index] is null then
5: return null
6: for all e in list at table[index] do
7: if e.key matches key then
8: return e.value
9: return null

School of Computing and Data Science - 27/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining

KWHashMap
Interface

Entry Class

get operation

put operation

remove operation

Data Fields

put operation

PUT(key, value)
1: index← key.hashCode() % table.length
2: if index is negative then
3: index += table.length
4: if table[index] is null then
5: table[index]← new linked list
6: Search list for key
7: if key in table then
8: set new value of entry
9: return old value of entry

10: else
11: Insert new key/value pair into list
12: Increment numKeys
13: return null

School of Computing and Data Science - 28/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining

KWHashMap
Interface

Entry Class

get operation

put operation

remove operation

Data Fields

remove operation

REMOVE(key)
1: index← key.hashCode() % table.length
2: if index is negative then
3: index += table.length
4: if table[index] is null then
5: return null
6: Search list for key
7: if key in table then
8: Remove entry from list
9: Decrement numKeys

10: return value
11: return null

School of Computing and Data Science - 29/30 - Frank Kreimendahl | kreimendahlf@wit.edu

Hash Table

Open
Addressing

Chaining

KWHashMap
Interface

Entry Class

get operation

put operation

remove operation

Data Fields

Data fields

import java.util.*;
public class HashtableChain<K, V>

implements KWHashMap<K, V> {
// Insert inner class Entry<K, V> here.
/** The table */
private LinkedList<Entry<K, V>>[] table;
/** The number of keys */
private int numKeys;
/** The capacity */
private static final int CAPACITY = 101;
/** The maximum load factor */
private static final double LOAD_THRESHOLD = 3.0;
public HashtableChain() {

table = new LinkedList[CAPACITY];
}
...

}

School of Computing and Data Science - 30/30 - Frank Kreimendahl | kreimendahlf@wit.edu

	Hash Table
	Hash Table Description
	Definition
	Example
	Hash Codes
	HashCode
	Collisions

	Open Addressing
	Open Addressing
	Issues
	Example
	Deletion
	Resizing
	Probing
	Probing

	Chaining
	Chaining
	Advantages
	Performance

	KWHashMap
	Interface
	Entry Class
	get operation
	put operation
	remove operation
	Data Fields

