COMP2000 - Data Structures Fall 2021

Recursion and Fractals
Due: Sunday, Oct 23 at 11:59PM

1 Recursion and Fractals Specification
1.1 Lab Instructions

e This is an individual lab.
e Make sure to read through all of the specifications so your submission is complete.

e Follow all the submission steps in the Setup document by the lab deadline.

1.2 Lab Link
The skeleton code for the lab is available at https://classroom.github.com/a/jDwcxpk7.
1.3 Introduction

For this lab, you will implement a Java class that draws a fractal shape. A fractal is an image that looks
the same when scaled/rotated different amounts. Fractals appear in nature quite frequently because their
creation process is very simple but can lead to complicated results.

Fractal shapes are also concise to describe in code, so we can draw a complicated image with few lines of
code.

Two classes are included in the project: DrawableFrame is a JFrame that you can draw lines on.
FractalDrawing is an abstract class that you should use as the basis for your own class. This class
provides code to initialize the frame, and provides you with a Graphics object that you can draw lines on.
Do not modify either of these classes!

The FractalDrawing class also has a couple of helpful methods. Calling show() will make your current
drawing appear in the frame. Calling wait (long) will make your program pause for some milliseconds. You
can use this to slow down the drawing operations so that you can see more granular changes in your drawing.

1.4 Class Construction

Create a new class in the edu.wit.cs.comp2000 package named Sierpinski.java. The class should extend
FractalDrawing, which has a useful constructor and other important methods.

1.5 main()

In a main() method, create a new Sierpinski object. The constructor of the superclass should handle all
of the drawing, so all you need to do is create the object.

1.6 drawFractal()

Implement this wrapper method to invoke a recursive drawing method with its starting parameters. In the
case of Sierpinski’s triangle, the parameters should be the x/y coordinates of the three vertices of the largest
triangle left to draw. A signature might look like:

private void drawSierpinski(int x1, int y1, int x2, int y2, int x3, int y3)

with vertices (x1, y1), (x2, y2), (x3, y3). The starting vertices should fill up the viewing window —
you can refer to the width and height of the window for the initial arguments. How can you calculate the
vertices based on the window size?

1.7 drawSierpinski()

Begin by drawing a large triangle. This can be achieved by calling graphics.drawLine() three times, once
for each pair of vertices. The graphics object is defined in the superclass.

1of


https://classroom.github.com/a/jDwcxpk7

COMP2000 - Data Structures Recursion and Fractals
Fall 2021 Due: Sunday, Oct 23 at 11:59PM

(0, 0) (width, 0)

\ (0, height) (width, height) \

First large triangle — three lines Coordinates of drawing corners

I would recommend printing debug information about the arguments each time you call drawSierpinski to
better understand what work your code is doing. (Comment it out for your final submission.)

Once you can draw a single triangle, it’s time to start thinking about recursive calls to draw smaller triangles,
and a base case — when to stop drawing. After drawing the largest triangle, you should draw three smaller
triangles as the next step. Where will these vertices be in relation to the original triangle? They should
each use two midpoints and one corner of the current triangle. See the image below for the second level of
triangles to draw, including red highlighting of one of those triangles.

Before testing a recursive method, we need a base case! How small can triangles get? At some point, a small
enough triangle won’t be visible at all. As a base case, stop when a triangle’s line segments have a length of
3 or less.

° Three smaller triangles

Three smaller triangles with one highlighted The full results

1.8 Testing

There are not separate JUnit tests for this lab. The visual results are the tests. If you see a drawing of
Sierpinski’s triangle, your code ran successfully. If you don’t, you still have work to do.

20f



COMP2000 - Data Structures Recursion and Fractals
Fall 2021 Due: Sunday, Oct 23 at 11:59PM

If you want to slow down the drawing so it doesn’t appear all at once, you can put a wait call inside
drawSierpinski.

If you are curious, play around with the initial arguments to your recursive method. You can skew the entire
fractal shape with a single small change!

1.9 Available Resources

e Lecture slides
e Other sections of the provided code
e me

The textbook

DO NOT refer to or use online implementations

2 Double Check:

e Have you created and implemented the Sierpinski class?

e Have you added the file to your repository and committed/pushed your code?

3 Grading

Grades and any comments for the lab will be posted to your project on github. Grades will also be posted
to Brightspace, eventually.

3of



	Recursion and Fractals Specification
	Lab Instructions
	Lab Link
	Introduction
	Class Construction
	main()
	drawFractal()
	drawSierpinski()
	Testing
	Available Resources

	Double Check:
	Grading

