
COMP2000 - Data Structures Fall 2022

DLList Iterator Completion
Due: Day of lab at 11:59PM

1 DLList Iterator Completion Specification

1.1 Available Resources

• Lecture slides

• Other sections of the provided code

• me

• The textbook

• DO NOT refer to or use online implementations

1.2 Lab Instructions

• This is an individual lab.

• Make sure to read through all of the specifications so your submission is complete.

• Follow all the submission steps in the Setup document by the lab deadline.

1.3 Lab Link

The skeleton code for the lab is available at https://classroom.github.com/a/irLIkie2.

1.4 Implementation

This lab introduces a DLList class to implement a list. The list can only be modified using a ListIterator

– all of the class methods of the List are gone.

Note the class header: DLList<E> implements Iterable<E>. This promises that DLList has an iterator()

function. In addition, an inner class KWListIter<F> implements ListIterator<E> is defined. ListIterator
is an extension of the Iterator interface, with extra operations available. The tests class has many examples
that use this iterator.

I have provided the class code in the edu.wit.cs.comp2000 package. You will implement the remaining
method – set. Descriptions of all of the method’s expected behavior are included in the lecture slides (on
the ListIterator page). In addition, Javadoc comments for them are visible if you hover over the method
names in Eclipse, as they implement the ListIterator interface.

For your implementation, consider what effect the method should have on the data structure. Don’t forget
that set changes a recently returned value, so it should reset lastItemReturned. It should also throw an
exception when appropriate.

1.5 Testing

The other goals of this lab are to practice with more unit testing and debugging. We will use this framework
this semester to verify that our data structure implementations work the way we expect them to.

In addition to the DLList code, JUnit tests are provided in the edu.wit.cs.comp2000.tests package. You
can run these tests to see if the DLList implementation is performing correctly. The tests that I have
provided check that most of the iterator operations are behaving as expected. They also provide examples
of how the JUnit methods assertTrue and assertEquals work and examples of how expected exceptions
can be detected.

For the two unimplemented test methods, implement tests that check if that method works with the iterator
implementation. You can follow the steps that other test methods take for each test – create a list and

1 of 3

https://classroom.github.com/a/irLIkie2


COMP2000 - Data Structures
Fall 2022

DLList Iterator Completion
Due: Day of lab at 11:59PM

iterator, modify the list, and then assert the ListIterator behaves the way you expect. Make sure that
you actually call the ListIterator method that you are testing. (You should also delete the Test not

implemented placeholder lines in the tests you implement.)

Note that one of the iterator methods has a bug, so correctly written tests should fail until you complete
the Debugging section.

1.6 Debugging

One of the iterator methods has an error in it! It works in some situations but not others. Using the JUnit
tests and your knowledge of the operation, fix that method in DLList so that it works correctly in every
case.

Think about which cases the method currently covers, and which cases it’s missing. Change the code so that
it covers all of the cases correctly. Once you do, the unit tests should correctly pass for it.

1.7 JUnit Assertion Syntax

For each of the JUnit assert* methods, the first argument is the string that prints out if the test fails. Use
any of these four assert methods in your tests to confirm the functionality of the SLList methods:

• assertTrue

• assertEquals

• assertNotEquals

• assertNull

1.8 Considerations For Each Method

Be considerate in testing your ADT. Your goal is to test all of the possible cases for each DLList method.
Each test method may have several assert method calls depending on how many possibilities you test for.
In future labs, you will be writing more complete test cases like these to test your own code.

1.8.1 Common Edge Cases

How might our list be structured when we run an operation? Consider all the different possibilities for each
operation. For each case that applies, we will want to write some code that sets up a list, followed by at
least one assert statement.

• Normal results (no bad inputs, no special cases in the operation)

• Bad index

• Adding/removing data from the front or end

• Expecting an exception

2 Double Check:

• Have you implemented the set ListIterator method?

• Have you written two JUnit tests?

• Have you debugged the DLList code so all the tests pass?

• Have you committed/pushed your code from the two files?

2 of 3



COMP2000 - Data Structures
Fall 2022

DLList Iterator Completion
Due: Day of lab at 11:59PM

3 Grading

Each of the 4 TODO sections is worth 1
4 of the lab grade.

Grades and any comments for the lab will be posted to your project on github. Grades will also be posted
to Brightspace, eventually.

3 of 3


	DLList Iterator Completion Specification
	Available Resources
	Lab Instructions
	Lab Link
	Implementation
	Testing
	Debugging
	JUnit Assertion Syntax
	Considerations For Each Method
	Common Edge Cases


	Double Check:
	Grading

